原题链接

题目描述

给你一个整数 nn 。按下述规则生成一个长度为 n+1n + 1 的数组 numsnums

  • nums[0]=0nums[0] = 0

  • nums[1]=1nums[1] = 1

  • 22in2 \le 2 * i \le n 时,nums[2i]=nums[i]nums[2 * i] = nums[i]

  • 22i+1n2 \le 2 * i + 1 \le n 时,nums[2i+1]=nums[i]+nums[i+1]nums[2 * i + 1] = nums[i] + nums[i + 1]

返回生成数组 numsnums 中的 最大 值。

数据范围

0n1000 \le n \le 100

样例

输入样例1:

n = 7

输出样例1:

3
样例1解释:

根据规则:
nums[0]=0nums[0] = 0
nums[1]=1nums[1] = 1
nums[(12)=2]=nums[1]=1nums[(1 * 2) = 2] = nums[1] = 1
nums[(12)+1=3]=nums[1]+nums[2]=1+1=2nums[(1 * 2) + 1 = 3] = nums[1] + nums[2] = 1 + 1 = 2
nums[(22)=4]=nums[2]=1nums[(2 * 2) = 4] = nums[2] = 1
nums[(22)+1=5]=nums[2]+nums[3]=1+2=3nums[(2 * 2) + 1 = 5] = nums[2] + nums[3] = 1 + 2 = 3
nums[(32)=6]=nums[3]=2nums[(3 * 2) = 6] = nums[3] = 2
nums[(32)+1=7]=nums[3]+nums[4]=2+1=3nums[(3 * 2) + 1 = 7] = nums[3] + nums[4] = 2 + 1 = 3
因此,nums = [0,1,1,2,1,3,2,3],最大值 33

输入样例2:

n = 2

输出样例2:

1
样例2解释:

根据规则,nums[0]nums[0]nums[1]nums[1]nums[2]nums[2] 之中的最大值是 11

输入样例3:

n = 3

输出样例3:

2

思路

简单模拟,返回最大值。不过可以给简化一下递推式。

i2i \ge 2

ii 为奇数,则:a[i2+1]=a[i]+a[i+1]a[i * 2 + 1] = a[i] + a[i + 1] ,可以变成 a[i]=a[i2]+a[i2+1]a[i] = a[\lfloor\frac{i}{2}\rfloor] + a[\lfloor\frac{i}{2}\rfloor + 1]

ii 为偶数,则:a[i2]=a[i]a[i * 2] = a[i] ,可以变成 a[i]=a[i2]a[i] = a[\frac{i}{2}]

结合一下:a[i]=a[i2]+i % 2a[i2+1]a[i] = a[\lfloor\frac{i}{2}\rfloor] + i \ \% \ 2 * a[\lfloor\frac{i}{2}\rfloor + 1]

代码

C++

const int N = 105;
int a[N];

class Solution {
public:
    int getMaximumGenerated(int n) {
        a[0] = 0;
        a[1] = 1;

        int res = a[n];
        for ( int i = 2; i <= n; i ++ )
        {
            a[i] = a[i / 2] + i % 2 * a[i / 2 + 1];
            res = max(res, a[i]);
        }
        return res;
    }
};

Java

class Solution {
    public int getMaximumGenerated(int n) {
        int a[] = new int[n + 2];
        a[0] = 0;
        a[1] = 1;
        
        int res = a[n];
        for ( int i = 2; i <= n; i ++ )
        {
            a[i] = a[i / 2] + i % 2 * a[i / 2 + 1];
            res = Math.max(res, a[i]);
        }
        return res;
    }
}